Calendar An icon of a desk calendar. Cancel An icon of a circle with a diagonal line across. Caret An icon of a block arrow pointing to the right. Email An icon of a paper envelope. Facebook An icon of the Facebook "f" mark. Google An icon of the Google "G" mark. Linked In An icon of the Linked In "in" mark. Logout An icon representing logout. Profile An icon that resembles human head and shoulders. Telephone An icon of a traditional telephone receiver. Tick An icon of a tick mark. Is Public An icon of a human eye and eyelashes. Is Not Public An icon of a human eye and eyelashes with a diagonal line through it. Pause Icon A two-lined pause icon for stopping interactions. Quote Mark A opening quote mark. Quote Mark A closing quote mark. Arrow An icon of an arrow. Folder An icon of a paper folder. Breaking An icon of an exclamation mark on a circular background. Camera An icon of a digital camera. Caret An icon of a caret arrow. Clock An icon of a clock face. Close An icon of the an X shape. Close Icon An icon used to represent where to interact to collapse or dismiss a component Comment An icon of a speech bubble. Comments An icon of a speech bubble, denoting user comments. Comments An icon of a speech bubble, denoting user comments. Ellipsis An icon of 3 horizontal dots. Envelope An icon of a paper envelope. Facebook An icon of a facebook f logo. Camera An icon of a digital camera. Home An icon of a house. Instagram An icon of the Instagram logo. LinkedIn An icon of the LinkedIn logo. Magnifying Glass An icon of a magnifying glass. Search Icon A magnifying glass icon that is used to represent the function of searching. Menu An icon of 3 horizontal lines. Hamburger Menu Icon An icon used to represent a collapsed menu. Next An icon of an arrow pointing to the right. Notice An explanation mark centred inside a circle. Previous An icon of an arrow pointing to the left. Rating An icon of a star. Tag An icon of a tag. Twitter An icon of the Twitter logo. Video Camera An icon of a video camera shape. Speech Bubble Icon A icon displaying a speech bubble WhatsApp An icon of the WhatsApp logo. Information An icon of an information logo. Plus A mathematical 'plus' symbol. Duration An icon indicating Time. Success Tick An icon of a green tick. Success Tick Timeout An icon of a greyed out success tick. Loading Spinner An icon of a loading spinner. Facebook Messenger An icon of the facebook messenger app logo. Facebook An icon of a facebook f logo. Facebook Messenger An icon of the Twitter app logo. LinkedIn An icon of the LinkedIn logo. WhatsApp Messenger An icon of the Whatsapp messenger app logo. Email An icon of an mail envelope. Copy link A decentered black square over a white square.

Early cancer diagnosis could be aided by innovative imaging technique by St Andrews researchers

Laser light patterns are sequentially focused in time onto a region of interest inside biological tissue. Fluorescence emitted by the sample under each illumination pattern is collected with a single-pixel detector after passing back through the tissue. By adding up the projected patterns weighted by the intensities recorded, an image of the sample can be reconstructed.
Laser light patterns are sequentially focused in time onto a region of interest inside biological tissue. Fluorescence emitted by the sample under each illumination pattern is collected with a single-pixel detector after passing back through the tissue. By adding up the projected patterns weighted by the intensities recorded, an image of the sample can be reconstructed.

An imaging technique has been developed by researchers at St Andrews University which could allow more detailed early diagnosis of cancer.

The innovative way to optically image through tissue had previously been thought impossible by some experts.

The St Andrews team say it could also provide a more detailed understanding of other diseases, including degenerative brain diseases.

The technique allows scientists to see deeper into tissue using light.

Researcher Adrià Escobet-Montalbán, Marie Curie fellow at St Andrews, said: “Our approach shows an innovative way to tackle a longstanding problem in imaging.

“It is exciting to see the response we have got from the international community as many people thought what we have done is impossible with light.”

Professor Kishan Dholakia, from the university’s School of Physics and Astronomy, said: “This is a timely breakthrough and I hope it leads to new ways of thinking about imaging at depth.”

A UK-wide research team was led by the Fife university, involving Southampton University and the Cancer Research UK Edinburgh Centre at Edinburgh University.

Its findings were published in the journal Science Advances.